Bagged One-Class Classifiers in the Presence of Outliers
نویسندگان
چکیده
The problem of training classifiers only with target data arises in many applications where non-target data are too costly, difficult to obtain, or not available at all. Several one-class classification methods have been presented to solve this problem, but most of the methods are highly sensitive to the presence of outliers in the target class. Ensemble methods have therefore been proposed as a powerful way to improve the classification performance of binary/multi-class learning algorithms by introducing diversity into classifiers. However, their application to one-class classification has been rather limited. In this paper, we present a new ensemble method based on a non-parametric weighted bagging strategy for one-class classification, to improve accuracy in the presence of outliers. While the standard bagging strategy assumes a uniform data distribution, the method we propose here estimates a probability density based on a forest structure of the data. This assumption allows the estimation of data distribution from the computation of simple univariate and bivariate kernel densities. Experiments using original and noisy versions of 20 different datasets show that bagging ensemble methods applied to different one-class classifiers outperform base one-class classification methods. Moreover, we show that, in noisy versions of the datasets, the non-parametric weighted bagging strategy we propose outperforms the classical bagging strategy in a statistically significant way.
منابع مشابه
Simultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملDealing with Class Imbalance using Thresholding
We propose thresholding as an approach to deal with class imbalance. We define the concept of thresholding as a process of determining a decision boundary in the presence of a tunable parameter. The threshold is the maximum value of this tunable parameter where the conditions of a certain decision are satisfied. We show that thresholding is applicable not only for linear classifiers but also fo...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملBAYES PREDICTION INTERVALS FOR THE BURR TYPE XI1 DISTRIBUTION IN THE PRESENCE OF OUTLIERS
Using a sample fiom Burr type XU distribution, Bayes prediction intervals are derived for the maximum and minimum of a future sample fromthe same distribution, but in the presence of a single outlier of the type 8,8. The prior of Q is assumed to be the gamma conjugate. A real example is given to illustrate the procedure. Also, the comparison between the values of the prediction bounds for dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 27 شماره
صفحات -
تاریخ انتشار 2013